
Front. Comput. Sci., 2014, 8(3): 378-390
DOI 10.1007/s11704-014-3503-1

Iaso: an autonomous fault-tolerant management system
for supercomputers

Kai LU 1,2, Xiaoping WANG1,2, Gen LI2, Ruibo WANG2, Wanqing CHI2, Yongpeng LIU2,
Hongwei TANG2, Hua FENG2, Yinghui GAO3

1 Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology,

Changsha 410073, China

2 College of Computer, National University of Defense Technology, Changsha 410073, China

3 ATR Laboratory, National University of Defense Technology, Changsha 410073, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Abstract With the increase of system scale, the inherent

reliability of supercomputers becomes lower and lower. The

cost of fault handling and task recovery increases so rapidly

that the reliability issue will soon harm the usability of super-

computers. This issue is referred to as the “reliability wall”,

which is regarded as a critical problem for current and future

supercomputers. To address this problem, we propose an au-

tonomous fault-tolerant system, named Iaso, in MilkyWay-

2 system. Iaso introduces the concept of autonomous man-

agement in supercomputers. By autonomous management,

the computer itself, rather than manpower, takes charge of

the fault management work. Iaso automatically manage the

whole lifecycle of faults, including fault detection, fault di-

agnosis, fault isolation, and task recovery. Iaso endows the

autonomous features with MilkyWay-2 system, such as self-

awareness, self-diagnosis, self-healing, and self-protection.

With the help of Iaso, the cost of fault handling in super-

computers reduces from several hours to a few seconds. Iaso

greatly improves the usability and reliability of MilkyWay-2

system.
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1 Introduction

It is a miracle that the computer science seems not to obey

the Murphy’s Law: anything which can go wrong will go

wrong. We only notice the capability increase of CPU, mem-

ory, network, and other peripherals, while computers seem

never suffer faults. Nevertheless, Murphy’s Law still dom-

inates computer science, when the scale of computer goes

large, especially in supercomputers.

A supercomputer is the interconnection of a large amount

of compute nodes and service nodes. Though the reliability

of each node is high, the overall reliability is low because of

the scale accumulation effect. For example, MilkyWay-2 su-

percomputer consists of compute nodes, communication net-

work and storage array. The system contains 16 000 compute

nodes with 32 000 CPU and 48 000 accelerators. For such

large scale, faults become frequent events for the whole sys-

tem. Once faults occur, they not only introduce costly fault

diagnosis and repair, but also disturb the running task, which

requires additional task recovery cost. The overall system

usability is greatly reduced by system faults. Consequently,

fault management becomes a new dimension of challenges

for supercomputer design, which is also named as “reliability

wall” [1].

Traditional system management consists of resource man-

agement and state monitoring. Only state monitoring is re-
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lated to fault management. However, state monitoring is dealt

by periodic check of system administrator. This inevitable in-

troduces delay on fault detection, and time cost on interactive

fault diagnosis. The diagnosis process requires backtracking

the reported errors and retrieving the lost information about

the fault context level by level. This process typically requires

from several minutes to many hours. Fault management by

manpower is inevitable inefficient and costly.

Many existing system tries to accelerate fault management

by automating part of the fault management procedure. Li

and Lan introduce a concept of proactive fault management

[2], which proactively migrates processes or performs check-

pointing based on fault alarm. This approach requires accu-

rate fault prediction for properly issuing the proactive actions,

which is over-idealized for current computers. Solaris intro-

duces fault management architecture (FMA) [3] to report and

handle hardware faults inside operating system. FMA can

event fix some noncritical faults and prevent the kernel panic,

but it can only manage fault inside the range of operating

system and the inter-system faults are not considered at all.

Oliner and Stearley propose to filter the system logs to iden-

tify the faults in the supercomputers [4]. However, their work

is mainly based on empirical knowledge and is hard to be au-

tomated. Sun et al. propose to build fault-aware computing

environment by adaptively directing runtime system to toler-

ant faults [5]. This approach also suffers the false positive of

the fault prediction, so that the cost prevents this technique

from using in supercomputers. There are also many works

[6–13] focusing on the fault management problems of clus-

ters, grids, or datacenters. They all work well in their pro-

posed scenarios, but these systems are tightly coupled with

certain system or application. None of them is suit for super-

computer management.

To conquer reliability wall of supercomputers, we propose

the concept of autonomous fault management. Autonomous

fault management targets automatically reacting hardware

faults and providing a relatively fault-free environment for

supercomputer applications. Compared with existing auto-

nomic computing systems [14], autonomous fault manage-

ment focuses more on the faults in the supercomputer itself

rather than environmental changes.

We implement an autonomous fault management system,

named Iaso. Iaso is the Greek goddess of recuperation from

illness. We adopt this name since our system does exactly

the same thing on supercomputers. The key of fault man-

agement is managing the lifecycle of all faults automatically

and minimizing the cost of each stage, including fault detec-

tion, fault diagnosis, fault isolation, and task recovery. That

is, Iaso makes the supercomputer to be self-managed. Iaso

implements the following five autonomous features for fault

management:

• Self-awareness: the supercomputer can be aware the ex-

ecution status and detect faults automatically.

• Self-diagnosis: the supercomputer can analyze the er-

rors and locate the root cause of the errors automati-

cally.

• Self-healing: the supercomputer can isolate the faulty

hardware, reconfigure itself, and preserve the usability

and efficiency automatically.

• Self-protection: the supercomputer can protect the tasks

running on it from the impact of faults automatically.

• Self-evolution: the supercomputer managing capability

can be improved with more and more experiences gath-

ered during system managing.

By autonomous management, Iaso greatly reduces the

overhead of fault management. Therefore, it increases the us-

ability and reliability of computer systems. In MilkyWay-2

supercomputer, Iaso speeds up the efficiency of fault man-

agement by two orders of magnitude.

In addition, Iaso is a general autonomous management

frame work that can be extended for a broad range of com-

puters beside supercomputers. We propose self-similar sys-

tem architecture for Iaso, by which Iaso does not sensitive the

scale of target computer system. Moreover, Iaso also provides

open interface that allows any developers to insert new func-

tion models. That is, Iaso supports dynamically and seam-

lessly extension. The architecture related and system special-

ized functions are confined into several models. Hence, the

work for the transplantation, extension, or upgrade of Iaso

is minimized. Besides this feature, the Iaso can also support

evaluative function. The Iaso can get more and smarter based

on ever increasing knowledge gathered from normal days.

To summarize, the contributions of this work are as fol-

lows:

1) We propose a scalable management framework that can

provide autonomous management service for almost all

existing large computer systems.

2) We abstract all kernel functionalities into mechanisms

and knowledge, so that the system functionality can be

evolved smoothly.

3) To the best of our knowledge, our system is the first

one for scaling to 50P system that contains thousands
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of compute nodes.

4) We implement the whole management system on the

MilkyWay-2 system for large-scale test. The results

prove the effectiveness of our design.

The rest of this paper is organized as follows. We intro-

duce the challenges of supercomputer management in detail

in Section 2. In Section 3, we describe the overview of Iaso,

including system architecture and the information flow for

fault management. We present the key enabling techniques

of Iaso in Section 4, and the deployment on MilkyWay-2 in

Section 5. Finally, we conclude the work in Section 6.

2 Challenges of supercomputer management

Supercomputer management is a key factor for the whole

system efficiency. Currently, most work depends on human

supervision. In contrast, the increased system scale imposes

more critical demands on management capabilities, includ-

ing real-time, flexibility, adaptability, and integration. Unfor-

tunately, human-centric management cannot fulfill most of

these requirements.

Real-time indicates the delay of reaction on system fail-

ures, including the hardware faults and the software excep-

tions. In supercomputer, the processes of a single applica-

tion are always tightly coupled. If one process is blocked or

slowed down by faults, other ongoing processes have to wait

for it because of the inter-process synchronization. Hence,

any problem in supercomputer introduces global degradation.

As a result, the real-time property of the reaction on sys-

tem failures is crucial for system efficiency. Clearly, human-

centric management inevitably introduces much delay on

failure discovery and reaction. In contrast, Iaso adopts au-

tomatic self-monitoring and failure reaction, thus to greatly

increase the real-time performance.

Adaptability is the capability to manage similar system by

historical knowledge of current system. Supercomputer man-

agement involves many aspects of supercomputer. It is de-

sired to use historical knowledge to reduce the difficulty of

managing a similar system. Human-centric management is

adaptable for this case. However, it suffers great difficulties

in training a new system manager, because the knowledge of

supercomputer management is typically gained in a case-by-

case way. In contrast, Iaso formalizes the knowledge of sys-

tem management, so that the knowledge can be easily reused

in a similar system.

Flexibility evaluates remaining usability against system

failures. Once failure occurs, it usually requires system re-

configuration to isolate the faulty components, so as to pre-

serve the system usability. System reconfiguration is based on

the accurate diagnosis of the source of the failures, because

the error message or the error phenomenon does not always

imply the root cause of the errors. Human-centric manage-

ment requires interactive error diagnosis and error fix, so that

it takes much time to recover the system usability. In contrary,

Iaso introduces automatic error diagnosis and error reaction,

thus to obtain much more flexibility on system management.

Integration measures the unification of all management as-

pects. Computer management includes task management, re-

source management, fault management, and so on. It is de-

sired to manage the entire system through a unified interface.

However, fault management typically requires tracking from

software to hardware, and the amount of knowledge typically

goes beyond the ability of a single human. Consequently, the

system administrator always leaves the fault management to

the developers. With the help of Iaso, the fault management

work is highly automatic, thus requiring very little human

participation. Moreover, Iaso can also directly call functions

of the resource management and task management subsys-

tems, so that Iaso integrates all management functions into a

single system.

In a word, traditional human-centric fault management en-

counters problems in the capabilities of real-time, flexibility,

adaptability, and integration. All of these capabilities then re-

strict the overall system efficiency. To solve such issues, we

introduce the concept of autonomous management in Iaso de-

sign, which enables automatically self-management of super-

computers. Iaso can greatly reduce the cost of supercomputer

management, so that improves the system usability and effi-

ciency.

3 System overview

3.1 System architecture

The aim of Iaso is not limited to supercomputer management.

It can cover a much larger range of computer systems, in-

cluding mainframe, MPP, CCNUMA, clusters, and even dis-

tributed cloud servers. To efficiently support such wide range

of computer systems, the design of Iaso achieves high adapt-

ability and configurability.

Iaso consists of three layers, i.e., the basic autonomous

management system (BAMS), the core autonomous manage-

ment system (CAMS), and the global autonomous manage-

ment system (GAMS), as illustrated in Fig. 1. The BAMS is
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Fig. 1 System architecture

the bottom layer of the whole system. Each BAMS manages

an independent function unit of a computer. We classify com-

puter components into intelligent devices and non-intelligent

devices. An intelligent device can run program, report its sta-

tus, and manage itself, such as a compute node. Typically,

the management boundary of a BAMS on intelligent devices

coincides with the boundary of the operating system. In con-

trast, non-intelligent devices cannot run program on them,

such as network switches. For a non-intelligent device, Iaso

utilizes neighboring intelligent devices, which are associated

with the non-intelligent device, to report and manage its sta-

tus. BAMS takes charge of low level fault detection, status

report, and local management. It reports faults to higher level,

does basic fault diagnosis, and conducts local fault handling

or task recovery.

The CAMS manages a group of BAMSes. In large-scale

systems, task execution requires the cooperation of many

compute nodes and related network devices. CAMS man-

ages the group-level faults. It takes into account the network

and the task distribution. All faults reported by BAMSes are

gathered by CAMS. It conducts two actions on the fault re-

ports. The first is inter-node diagnosis. Some faults exceeds

the boundary of BAMS, thus requires higher level diagnosis

and fault handling. The other work for CAMS is system-level

analysis. When a fault occurs in the network, CAMS analyzes

the influenced nodes, among which the communication is de-

graded. Besides, CAMS also analyzes the impact of faults on

the tasks, and determines whether Iaso should recover tasks.

There is a knowledge subsystem connected to CAMS. It pro-

vides system-level information, such as the network topol-

ogy, diagnosis rules. Moreover, the faults are recorded to

the database for further query or data mining. Similarly, the

GAMS has global view of the system and globally manages

all CAMSes.

The self-similar design of each layer greatly increases the

adaptability of Iaso. If the target system is the simplest sin-

gle server, we only need to deploy BAMS and provide basic

knowledge to the system. In contrary, if the target system has

sophisticate structures, we can accordingly deploy multiple

layers of the autonomous management system. In MilkyWay-

2, we deploy all three layers because of its huge scale.

3.2 Information flow

Iaso provides autonomous management of faults. It manages

the whole lifecycle of system faults. The information flow of

Iaso is thus fault-centric, as shown in Fig. 2.

When a fault occurs in the target system, the fault is first

detected by the fault detection model of BAMS. Then, the

fault detection model reported the fault to basic diagnosis

model to analyze the root cause of the fault. If it is success-

fully diagnosed, the local fault handling model will solve

the fault directly. At the same time, the fault is reported to

the upper level management system, i.e., CAMS, through

in-band or out-band communication. CAMS conducts



Kai LU et al. Iaso: an autonomous fault-tolerant management system for supercomputers 5

Fig. 2 Information flow

system-level diagnosis and determines whether it handles the

fault. CAMS may call basic fault handling model in BAMS to

recover or isolate the fault. In addition, CAMS also analyzes

the influenced domain of the fault and determines which part

of the system is degraded. The degraded resources and the

faulty resources are marked in the resource management sys-

tem. This information guides the future resource allocation.

Moreover, CAMS evaluates the tasks running on the faulty or

degraded nodes, and performs task recovery if needed. The

GAMS does similar work as CAMS under the view of the

whole system. Finally, if the fault requires a human fix ac-

tion, the user terminal will receive a message for the exactly

location of the faulty hardware to be replaced. Except the

hardware replacement, no further human action is required

in all the process. Hence, we call this process as autonomous

management.

4 Key technologies

4.1 Instant fault detection

Fault detection is the basis of autonomous fault management.

Traditional task management only focuses on task-level faults

instead of low-level faults. As low-level faults are probably

the root cause of task faults, managing low-level faults im-

plicitly covers task-level faults. Hence, Iaso targets low-level

hardware and software faults. On the other hand, a crucial is-

sue on fault detection is the detect delay of faults. Generally,

lower delay results in lower diagnosis cost and less fault prop-

agation, thus requires lower repair cost. For this reason, Iaso

adopts customized software and hardware to catch low-level

faults as early as possible.

4.1.1 OS kernel instrumentation

A typical hardware error may experience three stages before

it can be observed by the system administrator. First, a hard-

ware component goes wrong by aging, vibration, static elec-

tricity, fluctuation of voltage, interference, and so on. Though

this error does exist at this moment, it cannot be caught by

software. Then, the faulty hardware is used by the system,

and it triggers a failure state, such as ECC or other sanity

check mechanisms. The state failure may further be reported

to the operating system by interrupt or function call excep-

tion. Finally, system administrator receives an error message

about the fault, for example a kernel panic or a process crash.
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Iaso requires the fault detection be as early as possible. As

we have discussed, we cannot detect a fault in the first stage

by software, thus the second stage is a proper choice for er-

ror detection. Further, if Iaso properly handles the fault in the

second stage, administrator will not receive any error reports

in the third stage. Since the error handling is done by the com-

puter itself and is transparent for system administrator, Iaso

makes the computer fault management autonomous.

Iaso instruments the operating system kernel to catch faults

of the target system. For peripherals, Iaso instruments the de-

vice drivers to catch the exceptions. For PCIe bus, Iaso adopts

AER mechanism to catch faults. For hard disks, Iaso also im-

plements SMART-based fault prediction besides host driver

instrumentation. For Intel CPU, Iaso utilizes MCE mecha-

nism to catch faults on CPU, system bus, and memory. Be-

sides, Iaso also reports all software faults, such as out of

memory, segment faults.

To facilitate OS kernel instrumentation, we implement a

branch coverage tool. The tool is designed by a key observa-

tion that most errors in device drivers are reported by sta-

tus check. Moreover, status check is always expressed as

branch instructions in driver code. However, it is complicated

for some drivers to manually check the whole status space.

Hence, we implement a special static analysis tool to check

branch code in device drivers. It can automatically identify

the error reporting path, as well as uncovered path. The error

reporting path is recognized by the return value analysis and

several programming patterns in kernel code, such as “return

-EIO”, “printk(KERN_ERR . . . ”. Then, the tool reinforces

the code on the identified path, which facilitates driver in-

strumentation.

The instrumentation adopts the concept of aspect-oriented

programming (AOP). We take the error reporting as an as-

pect for OS kernel. As OS kernel is programmed by pure C,

it cannot directly support AOP model. To solve this problem,

we introduce a pre-compile phase. We first insert instrumen-

tation hints in the OS code, then the pre-compiler turns all the

hints to standard C code. By this means, the error reporting

function can be configured to the specified implementation.

This mechanism greatly increases the flexibility of fault de-

tection.

All faults reported by the instrumentation code are first

collected by a kernel message packer. The kernel message

packer ensures the message can be proper delivered at any

kernel context. Then, the message packer transmits the fault

messages to the user-level message dispatcher model by net-

link mechanism, as shown in Fig. 3. Finally, the message dis-

patcher sends the message to proper local handlers. For ex-

ample, there is a message report model on each BAMS that

reports faults to CAMS server.

Fig. 3 Message gathering and transmission

4.1.2 Hardware fault detection

Hardware fault detection mechanism catches the first-hand

errors from the hardware components. However, as the

performance of supercomputers strides over the phase of

10PFlops, fault detection from tens of thousands of hard-

ware components becomes extremely difficult. To conquer

this challenge, Iaso implements a hierarchical hardware man-

agement architecture. As shown in Fig. 4, this architecture is

composed of three tiers. At the bottom tier, hardware compo-

nents are partitioned into several management clusters, each

of which is managed by a system management controller

(SMC). At the middle tier, a tree-based monitoring network

bridges the SMCs to the management and control center. At

the top tier, the management and control center takes charge

of policy dispatch and system-level hardware management.

Fig. 4 Hardware management architecture

In each management cluster, diverse hardware compo-
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nents, including the computing modules, the communication

modules, the power modules, and the cooling modules, are

all highly encapsulated as unified targets. All these targets

are directly connected to the SMC through various types of

the interfaces, such as I2C, JTAG, UART, GPIO, and so on.

The SMC jointly applies both periodical scan and instant in-

terrupt approaches to monitor hardware states. To guarantee

monitoring efficiency, hardware information gathered in each

scan circle is well-tailored according to the top tier policies.

It may consist of parts of the following quantities, includ-

ing various voltages, temperatures and powers of each target,

the environment physical measurements, the inner states of

the diverse chips, and so on. Fatal hardware errors are al-

lowed to be issued as interruptions, which have higher prior-

ities in SMC. Based on the internal detection algorithms and

the external configurations, the SMC picks out the first-hand

hardware failures from the regular hardware information and

filters the outliers. Whenever faults are detected, the SMC

periodically reports the refined hardware information up to

the management system and control center via the monitor-

ing network.

The system management and control center visualizes the

out-band hardware information, and submit a copy to the au-

tonomous system for further fault diagnosis and prediction. It

also takes recovery measures to separately solve parts of the

hardware faults. Based on the feedbacks from the bottom tier,

the center periodically evaluates the validity of the hardware

fault detection mechanism. If needed, it adjusts the policies

on the SMCs for more efficient system-level hardware man-

agement.

4.2 Message driven model cooperation

Iaso integrates many separate models, each of which accom-

plishes a partial function of the whole system. The design of

Iaso is an open system, which allows dynamically inserting

or offloading function models. To support the cooperation be-

tween the models and reduce the development cost, Iaso de-

fines a message-driven interface as well as the morphology

for the messages.

The message-driven interface has two layers, the inter-

system layer and the intra-system layer. The goal of inter-

system message-driven interface is to gather fault messages

from BAMS to CAMS. The key of this process is reliable

message passing. Iaso adopts an adaptive in-band and out-

band communication to ensure reliability. In MilkyWay-2

system, there are two communication channels. One is the

computing network, which provides high bandwidth and low

latency communication. The other is the monitoring network

based on our SMC hardware, which provides relatively lower

bandwidth and higher latency communication. The preferred

communication channel of Iaso is the in-band channel. Nev-

ertheless, if the computing network is congested or broken,

Iaso adaptively sends the message through the out-band chan-

nel.

The goal of intra-system message-driven interface is to

route all message to the proper function model. The basis of

this mechanism is a morphology which defines the forms of

message. A message in Iaso is a layered tree-structure text.

Each layer defines the taxonomy of message type, and the

sub-layers define the sub-types. The intra-system message-

driven interface implements a message subscribe-dispatch

mechanism to send all messages to proper function model. As

shown in Figs. 5 and 6, the system structures of BAMS and

CAMS are quiet similar. The central model is the message

dispatch model. Iaso provides API for function model de-

velopers to subscribe the types of message that this function

model handles. The message type can be any layer defined by

the morphology. When the model is inserted to the system,

the message dispatch model will record the message-model

subscription relationship. In the runtime, when the message

dispatch model receives a message from any model, it will

check the subscription relationship and dispatch the message

to proper function models. Note that all subscribed model

will receive a copy of the message in this procedure.

Fig. 5 Basic message subscribe-dispatch

The message subscribe-dispatchmechanism defines a clear

interface for all function models. The cooperation of the mod-

els is implicitly accomplished by message handling. All mod-

els just subscribe the types of messages they handle, and send

all messages they created to the message dispatch model.

Hence, the development of each single model is all indepen-

dent and the runtime system can dynamically insert, offload,

or update the function models safely and freely.

4.3 Rule-based fault diagnosis

The error reported by status exceptions cannot always
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Fig. 6 Core message subscribe-dispatch

identify the root cause of the error. This brings about the dif-

ficulties of fault handling and fault isolation. Hence, Iaso pro-

poses rule-based fault diagnosis mechanism, which combines

the passive and active diagnosis techniques.

4.3.1 Passive diagnosis

Passive diagnosis model utilizes the error message reported

by the fault detection model to determine the real source of

the faults. A critical difficulty for passive diagnosis is that the

faults and the error messages have complicated relationships.

In a real-world system, an error message can be triggered by a

set of possible reasons that make the status abnormal. For ex-

ample, MilkyWay-2 adopts centralized network file system.

As a result, a file-read error may be caused by either a disk

fault or a network error. Similarly, a fault may create a se-

ries of status check failure when the fault propagates in the

system. Take a network error as an example. If a router does

not work properly, there may be both communication errors

and file access errors. Though we receive multiple error mes-

sages, the root cause of the errors is the same in this case.

To automatically diagnose the root cause, Iaso models the

error propagation as a directed acyclic graph (DAG). The

roots of the DAG are all root causes, which are the output

of the diagnosis process. The leaves of the DAG are the mes-

sages which Iaso can receive by the fault detection model.

There are also some middle states which represent some tran-

sition events from the root cause to the error messages. Fig-

ure 7 shows an example of the error propagation DAG, where

three root-causes may trigger four error detectors with four

middle states.

The diagnosis process is a reverse searching along the

propagation direction. We also use the example shown in Fig.

7. If we receive error message #2, we can reversely go to mid-

dle state #1 and #4, and finally get root cause #1 and #3, as

marked by the dashed line. Similarly, if we receive error mes-

sage #4, we can get root cause #2 and #3, as marked by the

Fig. 7 Passive diagnosis model

dotted line. If we receive error message #2 and #4 simultane-

ously, we use a set and operation on the two root cause sets,

and the final result is root cause #3. In real world system, the

DAG is far more complex than this example. This diagnosis

may suffer two major problems. The first problem is that there

may be multiple root-cause sets can explain the received er-

ror messages, leading to the ambiguity of the diagnosis. Iaso

adopts the rule of Occam’s Razor to solve this issue. That is,

Iaso selects the root-cause set with minimum cardinality. The

reason behind this principle is that the possibility of raising

multiple faults in the same time is low. Also, this principle

leads to minimum fault isolation and fix action, thus leading

to minimum disturbance to the system and the tasks. Even

if this principle does miss part of root-causes, these missed

faults will create further errors and require another round of

diagnosis to solve them. The second problem is that the final

root-cause set may contain multiple items that may cause the

received error messages. This may confuse the error isola-

tion and fault repair. Clearly, passive diagnosis cannot solve

this issue by itself, and it requires additional knowledge, for

example, by active diagnosis.

By this means, Iaso can automatically diagnose all faults

that follow the DAG model. Fortunately, all existing hard-

ware faults fall into this kind, including the CPU, memory,
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PCIe bus, and disk. Clearly, there are cases that cannot be

described by DAG model, such as dead lock. Nevertheless,

such complicated fault reasoning is out of the scope of Iaso.

The syntax of expressing the DAG is a propagation centric

way. The DAG expression file is a set of rules, where each

rule represents a preparation relationship between a reason

event and a result event. Passive diagnosis model loads the

rule files, parses the rules, and constructs the DAG for fault

diagnosis. The rules represent the diagnosis knowledge for

Iaso. Currently, the rules are written by the system adminis-

trator based on the knowledge of the system. With the accu-

mulation of knowledge, Iaso becomes smarter and smarter.

4.3.2 Active diagnosis

Passive diagnosis is to diagnose the system faults by the pas-

sively received error messages. In contrast, active diagnosis

is to diagnose by actively run specialized diagnosis scripts to

determine whether the target component is in healthy state.

Active diagnosis consists of a set of test scripts for speci-

fied hardware components, such as CPU, memory, network,

and peripherals. Clearly, active diagnosis consumes some

system resources for test tool execution and result reporting.

Hence, the occasion of issuing active diagnosis is restricted.

Active diagnosis mainly has two responsibilities. The first

component that issue active diagnosis is the passive diagno-

sis model. In some special case, we can only get a list of

suspicious components by the rule-based passive diagnosis.

When the passive diagnosis model cannot determine the real

source of error by the knowledge of DAG, it will run active

diagnosis against the suspicious components and determine

the final result by the execution result. The second occasion

of issuing active diagnosis is for regular system state check.

Before users run tasks on supercomputers, they always want

to ensure that the computer is in healthy state. Hence, a thor-

ough check is preferred before critical task running, and this

is done by issuing active diagnosis on the allocated compute

nodes. Besides, users want to regularly check computer state

on some specified occasions, for example, when the system

is ideal, when the compute node is started up, or when the

specified day or time is reached.

The syntax for expressing the user specified active diag-

nosis is also rule-based. Based on the user requirement, the

system administrator writes a configuration file by rules that

direct Iaso to perform active diagnosis on proper occasion.

The rule mainly consists of three fields. The first one is the

occasion, such as ideal, a specified time or day. The second

filed specifies the test script for active diagnosis with a pa-

rameter for the target hardware component. The third filed

is an optional script for result check. For some test scripts,

it only returns a performance evaluation, while the threshold

is related to the expected hardware performance. Iaso uses

result check script to sparse the test result and translate the

result to a yes/no style result.

4.4 Fault influence domain analysis

Supercomputer is a complex system that requires the coop-

eration of many subsystems. As a result, an error in one

subsystem may influence the function of another subsystem.

This phenomenon typically exists in the network subsystem,

where the degradation or breakdown of a router may affect

the performance of a group of nodes. Iaso introduces fault in-

fluence domain analysis technique to infer which part of the

system is influenced by the faults.

Fault influence domain analysis mainly focuses on the net-

work subsystem. When some routers or links are broken

or degraded, the packages may reroute to bypass the faulty

area. Bypassing results in latency increase and bandwidth de-

crease. This further slows down the computation process of

user tasks. The fault influence domain analysis requires two

kinds of basic knowledge, the network topology and the route

strategy. The route strategy is relatively fixed, falling into sev-

eral kinds. Nevertheless, the topology varies much for dif-

ferent systems. Iaso adopts a XML-based syntax to express

network topology. XML provides layered syntax which per-

fectly matches the layered structure of supercomputers. The

system manager writes proper XML file to express the neigh-

boring relationship of the routers and the nodes. Iaso parses

the XML file and constructs the network topology for fault

influence domain analysis.

When a fault is diagnosed as a network fault, this fault

is dispatched to fault influence domain analysis model. The

model infers the node set, among which the communication is

degraded. Further the model also evaluates the level of degra-

dation and marks it to three grades, that is, fatal, severe, and

moderate. This information is reported to the resource man-

agement system. The resource management system will al-

locate healthy nodes in prior, then use less degraded nodes.

Moreover, Iaso also evaluates the slowdown of the running

tasks on the influenced node set. If the slowdown reaches cer-

tain level, Iaso needs to recover the whole task on a healthy

node set to obtain better performance.

4.5 Task-based fault handling

When Iaso receives a fatal fault, it has to handle the fault to
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minimize the impact of the fault and recover the running tasks

on the faulty node. Fault handling has two major components,

fault isolation and task recovery.

4.5.1 Fault isolation

The aim of fault isolation is to prevent to run tasks on the

faulty or degraded nodes. In MilkyWay-2 system, there is

a resource management subsystem to allocate system re-

sources. Iaso integrates the resource management system to

maintain the available resources.

The state-machine of a node is shown in Fig. 8. Initially, all

nodes are at the state power off. After the power supply man-

agement system powers on this node, its state transfers into

initialized. Before we run tasks on a set of compute nodes,

we typically issue an active diagnosis on the target node set.

If a node passes the active diagnosis, its state is set to healthy.

Then, we can run user tasks on these healthy nodes. If a node

locates in an influenced domain of a fault, Iaso marks its state

into degraded. Iaso also scores the degraded state into several

grades. When we run user tasks, we first select healthy nodes

then use the nodes that less degraded. When the source of the

influenced domain is repaired, the state of the degraded node

is transferred back to healthy. When a node is in initialized,

healthy, or degraded state and a fatal error occurs in this node,

Iaso changes the state of the node into faulty. Once in the

faulty state, the node is drained from running user tasks. The

graphic terminal of Iaso reports this error, as well as the pre-

cise location of the faulty hardware component. The system

administrator can then fix the fault by replacing the hardware.

This procedure generally requires the node to be powered off,

thus the node come back to the initial power off state.

Fig. 8 State transition

Note that all the aforementioned process is all automatic,

except the hardware replacing action. Even for this action,

Iaso also provide directive information about the exact lo-

cation of the faulty hardware. Hence, Iaso makes the super-

computer management autonomous, and greatly reduces the

overhead of fault management.

4.5.2 Fast task recovery

Iaso provides a fault-tolerance runtime which makes the pro-

gram actively tolerate the system fault at low cost. The run-

time provides a checkpointing mechanism with a simple pro-

gramming interface, by which applications can achieve sus-

tainable and efficient performance. By checkpointing mecha-

nism, Iaso can recover user tasks from any fatal faults.

Compared to the parallel file system, memory access is

with the properties of high bandwidth, low latency. Using

memory to save checkpoint file can significantly improve the

read and write speed. The problem for memory checkpointing

is that it is volatile. Once the node was failed, the checkpoint

file would be lost. The runtime uses an in-memory double

checkpointing technique, i.e., each node has its own check-

point copy in local memory, and in addition saves the copy of

the checkpoint on a partner node. When a node fails, the im-

age of the node can be recovered from the checkpoint copy

of the partner node, so that the checkpoint backup and re-

dundancy backup between each other overcome the volatile

memory problems.

The two mutual-backed nodes may also fail simultane-

ously, and as a result checkpoint data cannot be recovered.

Therefore, we should use appropriate strategies to pick part-

ner node avoid this from happening. On MilkyWay-2 system,

two nodes on the same board, multiple boards on the same

frame, are sharing communication, backboard, power supply

and other hardware resources, so that the probability of si-

multaneous failure is higher than the nodes/boards on differ-

ent boards/frames. We therefore provide a partner node selec-

tion method based on stride of MPI rank of the process. The

user can specify stride parameter while loading jobs. Each

node selects a partner node, and the MPI rank interval be-

tween two nodes is equal to the stride. The method can reduce

the probability of simultaneous failure of the mutual-backed

nodes, and consequently improve fault tolerance by carefully

selecting stride parameters.

In-memory double checkpointing requires twice the mem-

ory space as big as the checkpoint file. Because each comput-

ing node of MilkyWay-2 is installed with 64 GB of memory,

the memory is adequate for most application with the check-
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point enabled. For some applications that require large mem-

ory, we design and implement the XOR checkpoint mecha-

nism to reduce the required memory usage. Nodes involved in

the calculation are assigned to XOR sets or disjoint sets, and

the checkpoint files in a XOR set is XOR-computed and split

into many segments. Besides one full checkpoint file in lo-

cal memory, each node includes one segment. If a node fails,

its lost file can be reconstructed using the XOR parity seg-

ments. If a XOR node set includes N nodes, then the memory

overhead is reduced from the size of two checkpoint files to

1 + 1/(N − 1) the size of a checkpoint file.

When the runtime tries to restart a job, it checks most re-

cent checkpoint files in memory at runtime, automatically an-

alyzes whether they constitute a complete set of checkpoints

for job recovery. If they pass the check, fault-tolerant runtime

restarts the job and rebuilds the redundancy data according

to the new MPI rank. Otherwise, it will delete the checkpoint

set, and attempt to recover from the next most recent check-

point set. Fault-tolerant runtime will continue the process un-

til the job is successfully restarted.

5 Deployment on MilkyWay-2

Iaso is fully deployed on MilkyWay-2 supercomputer.We de-

ploy a BAMS on each node, including the customized oper-

ating system kernel and the application-level service models.

As the MilkyWay-2 system consists of computing subsystem,

storage subsystem, and service subsystem, we accordingly

deploy three CAMSes to manage each subsystem. Overall,

we deploy a GAMS to collect all messages for the whole sys-

tem.

The graphical interface of Iaso is shown in Fig. 9. This

interface is mainly for monitoring and exhibition of errors.

It consists of five windows to show different information of

Iaso. The upper left window shows the status of the whole

system in graphic mode. The graph exactly shows the physi-

cal distribution of the system, including the cabinets and the

boards. The gray racks are not powered on. The colors on

the boards denote the state of the board, where green, yel-

low, orange, and red represents healthy, degraded, severely

degraded, and broken, respectively. As we cannot show all

six rows of the cabinets in a single window, we split them into

two windows and display them by turns. The lower left win-

dow shows the most recent errors in the system. The lower

middle window lists the most recent influenced domain of

faults. The upper right window displays the curve of error

amount by time. The lower right window shows the raw error

messages. By this interface, system administrator can easily

get all errors in real time mode.

Besides the graphical interface, we also develop a set of

interactive tools to manage Iaso. The tool set consists of fault

Fig. 9 Graphical interface
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query tool, fault injection tool, model management tool, and

system deployment tool. All of the tools facilitate the use of

Iaso. In addition, these tools support the redevelopment of

Iaso to build more intelligent systems.

6 Conclusion

In this paper, we introduce Iaso, an autonomous fault man-

agement system in MilkyWay-2. Iaso introduces the con-

cept of autonomous management on system faults, and pro-

vides the whole lifecycle management automatically. By

Iaso, supercomputers can get several autonomous features,

such as self-awareness, self-diagnosis, self-healing, and self-

protection. Iaso greatly improve the management perfor-

mance in the features of real-time, flexibility, adaptability,

and integration. With the help of Iaso, the cost of fault han-

dling in supercomputers reduces from several hours to a few

seconds. As a result, Iaso greatly increases the reliability and

usability of MilkyWay-2 system.
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